THE 2008 SUMMER WATER TEMPERATURE AND FLOW MANAGEMENT PROJ ECT

NECHAKO FISHERIES CONSERVATION PROGRAM
Technical Report No. RM08-1

Prepared by:
Triton Environmental Consultants Ltd.
Draft: November 2008

Table of Contents

List of Figures i
List of Tables ii
List of Appendices iii
ABSTRACT 1
INTRODUCTION 1
METHODS 3
RESULTS 6
DISCUSSION 7
Recorded Data
Volume of Water Used
Application of the Summer Water Temperature and Flow Management Project
Release Criteria
REFERENCES 15
APPENDICES

List of Figures

Figure 1: Nechako River Study Area
Figure 2: Recorded Mean Daily Temperatures in the Nechako River above the Stuart River Confluence July 10 to August 20, 2008

Figure 3: Skins Lake Spillway Releases and Flows in the Nechako River below Cheslatta Falls and at Vanderhoof July 10 to September 6, 2008

Figure 4: Flows in the Nechako River below Cheslatta Falls Resulting from Skins Lake Spillway Releases, July 10 to August 20, 200813

List of Tables

Table 1: Daily Operations to Manage Water Temperatures in the Nechako River above the Stuart River Confluence

Table 2: Predicted and Recorded Mean Daily Water Temperatures in the Nechako River above the Stuart River Confluence, July 10 to August 20, 2008

Table 3: Recorded Mean Daily Water Temperatures in the Nechako River above the Stuart River Confluence, July 10 to August 20, 2008

List of Appendices

Appendix A: Numerical Example of Water Temperature Trend Calculation
Appendix B: Mean Daily Water Temperatures in the Nechako and Nautley Rivers, 2008
Appendix C: Mean Daily Skins Lake Spillway Releases and Flows in the Nechako and Nautley Rivers, 2008

Appendix D: Recorded and Forecast Meteorological Data
Appendix E: Summer Water Temperature and Flow Management Project Reservoir Release Volume Calculations for July 10 to August 20, 2008

ABSTRACT

The 2008 Nechako River Summer Water Temperature and Flow Management Project (the Project) was undertaken to attempt to prevent mean daily water temperatures in the Nechako River above the Stuart River confluence (at Finmoore) from exceeding $20.0^{\circ} \mathrm{C}\left(68.0^{\circ} \mathrm{F}\right)$ between July 20 and August 20. Water temperatures were managed by regulating Skins Lake Spillway releases to control flows in the Nechako River below Cheslatta Falls and at Vanderhoof. In 2008, mean daily water temperatures in the Nechako River above the Stuart River confluence did not exceed $20.0^{\circ} \mathrm{C}\left(68.0^{\circ} \mathrm{F}\right)$ between July 20 and August 20.

Over the duration of the 2008 Summer Water Temperature and Flow Management Project (July 10 to August 20), the total volume of water released was $7,529.3 \mathrm{~m}^{3} / \mathrm{s}-\mathrm{d},(265,897$ $\mathrm{cfs}-\mathrm{d})$, and the average release during the Project was $179.3 \mathrm{~m}^{3} / \mathrm{s}(6,330.9 \mathrm{cfs})$.

I NTRODUCTI ON

The Nechako River Summer Water Temperature and Flow Management Project (the Project) was designed and developed in 1982 and has been successfully implemented since 1983. Since 1988, water temperature and flow management projects (Triton 1995a through Triton 1995h; Triton 1996 through Triton 2006) have been carried out under the auspices of the Nechako Fisheries Conservation Program (NFCP).

The objective of the Project is to attempt to prevent mean daily water temperatures in the Nechako River above the Stuart River confluence (at Finmoore) from exceeding $20.0^{\circ} \mathrm{C}$ $\left(68.0^{\circ} \mathrm{F}\right)$ by regulating releases from the Skins Lake Spillway to control flows in the Nechako River below Cheslatta Falls and at Vanderhoof. The Project operates from July 10 to August 20 (the operational period) with the goal of managing water temperatures in the Nechako River at Finmoore between July 20 and August 20 (the water temperature control period, hereafter referred to as the control period). These dates may vary as directed by the NFCP in accordance with the timing of sockeye runs in the system, but were followed in 2008. At the completion of the STMP, flows in the Nechako River at Cheslatta Falls are reduced to fall spawning flows by early September.

The Project study area is shown in Figure 1. Unless otherwise stated, references to water temperature, flow (including releases), and meteorological data are mean daily values. Note that water temperature measurements for the Nechako River above the Stuart River confluence are made at Finmoore (the closest readily accessible location) while river discharge measurements are made at Vanderhoof (at the Water Survey of Canada discharge measuring site).

This report reviews the 2008 Summer Water Temperature and Flow Management Project and includes:

- An outline of the method for determining Skins Lake Spillway releases and summaries of the 2008 Skins Lake Spillway releases for the period July 10 to August 20 inclusive;
- Recorded flows and water temperatures (July 10 to August 20) at various locations along the Nechako River; and,
- The volume of cooling water used in the 2008 Summer Water Temperature and Flow Management Project.

METHODS

Management of the Nechako River flows and water temperatures used water temperature predictions based on five-day meteorological forecasts prepared by the commercial forecasting division of Pelmorex Inc. (The Weather Network) to determine the schedule of Skins Lake Spillway releases required to meet project objectives. The Summer Water Temperature and Flow Management uses an unsteady-state flow routing model and an unsteady-state water temperature prediction model designed to compute daily flows and water temperatures in the Nechako River during the entire operational period (Envirocon Limited, 1984a,b,c and 1985).

Daily operations followed the protocol defined in the Settlement Agreement (Anon. 1987), and involved collection of water temperature and river stage data from several locations in the study area, as well as development of five-day meteorological forecasts.

Water temperatures were obtained daily from temperature loggers maintained in the Nechako River below Cheslatta Falls (at Bert Irvine's Lodge), in the Nechako River at Fort Fraser (upstream of the Nautley River), in the Nechako River above the Stuart River confluence, and in the Nautley River. Water temperature data for the Nechako River below Cheslatta Falls and the Nautley River were provided by Water Survey of Canada. Following failure in 2007 of the Weksler thermographs used in prior years, water temperature data in the Nechako River at Fort Fraser and in the Nechako River above the Stuart River confluence were obtained using HOBO U12 Outdoor/Industrial Data loggers (listed accuracy of $+/-0.25^{\circ} \mathrm{C}$). In addition, spot temperatures measured with a calibrated mercury thermometer $\left(+/-0.1^{\circ} \mathrm{C}\right)$ and corresponding recorded water temperatures were collected daily in the Nechako River at Fort Fraser and in the Nechako River above the

Stuart River confluence. The spot data enabled an ongoing check of the HOBO data loggers.

River stages were obtained daily from Water Survey of Canada recorders maintained in the Nechako River below Cheslatta Falls, in the Nechako River at Vanderhoof, and in the Nautley River, and provided via a daily e-mail from Environment Canada (Water Survey of Canada, WSC). Five-day meteorological forecasts were e-mailed daily by World Weatherwatch (Pelmorex Inc. www.theweathernetwork.com).

Water levels recorded hourly by WSC in Cheslatta Lake at West End were also obtained (via daily e-mail from Environment Canada) from the station's data collection platform. These lake level data were used to assist in the analysis of daily predictions of flow produced by the flow routing model for the Nechako River below Cheslatta Falls, and to account for local inflow to the Cheslatta/Murray Lakes system.

The first 10 days of the operational period, July 10 to July 19, were utilized for system start up, for initialization of the database required to schedule Skins Lake Spillway releases, and to increase flows in the Nechako River from spring flows to the minimum cooling flow of $170 \mathrm{~m}^{3} / \mathrm{s}(6,000 \mathrm{cfs})$ below Cheslatta Falls. The 2008 Skins Lake Spillway spring base release as directed by the NFCP was $49.0 \mathrm{~m}^{3} / \mathrm{s}$ ($1,730 \mathrm{cfs}$). Upon commencement of the operational period on July 10, the recorded flow in the Nechako River below Cheslatta Falls was $50.1 \mathrm{~m}^{3} / \mathrm{s}$ ($1,769 \mathrm{cfs}$). The Skins Lake Spillway was increased to $136 \mathrm{~m}^{3} / \mathrm{s}$ (4,802 cfs) on July 11, to $223 \mathrm{~m}^{3} / \mathrm{s}(7,875 \mathrm{cfs})$ on July 14 , to $283 \mathrm{~m}^{3} / \mathrm{s}$ ($10,000 \mathrm{cfs}$) on July 16, and was decreased to $170 \mathrm{~m}^{3} / \mathrm{s}(6,000 \mathrm{cfs})$ on July 19 to ensure flows in the Nechako River below Cheslatta Falls reached the minimum cooling flow of $170 \mathrm{~m}^{3} / \mathrm{s}$ ($6,000 \mathrm{cfs}$) by July 20 (the beginning of the water temperature control period).

Throughout the operational period, water temperatures in the Nechako River were calculated daily for the previous day, the current day, and each of the next four days using the unsteady-state flow routing and water temperature prediction models. These calculations were based on recorded and fiveday forecast meteorological data, recorded water temperature, and computed flow data. Forecast water temperature predictions were tabulated and reviewed daily to identify trends in water temperature changes. These trends are the same as those used in the water temperature and flow management projects since 1984 (Envirocon Ltd. 1985), and are best explained through reference to Table 1.

Assuming the current day is July 16, entries corresponding to the current day's operation are represented by the letter c. Entries co and cs represent the recorded and calculated water temperatures, respectively, for the previous day (July 15). Entries c1 through c5 represent predicted water temperatures computed using the current day's five-day meteorological forecast and an assumed current day's flow regime. The entry $r c$ represents the current day Skins Lake Spillway release required to meet Project objectives.

The following three trends in water temperature changes were reviewed on a day-by-day basis:

1. Observed trend - developed from recorded mean daily water temperatures measured in the Nechako River above the Stuart River confluence each day (bo and co in Table 1). The difference in recorded water temperatures for the previous two days is extrapolated over the next five days to determine the observed water temperature trend.
2. Predicted trend - developed from the predicted water temperatures for the previous day and the following five
days (cs, c1, c2, c3, c4, c5, in Table 1). These data represent the predicted trend.
3. Forecast trend - developed from the difference between the current five-day and previous five-day predictions for the same calendar days (c3 and b4, c2 and $b 3, c 1$ and $b 2$ in Table 1). Differences between forecasted data on coincident dates for the current day and the next two days only are averaged and added to the fifth day predicted temperature to determine the trend in forecasted temperatures.

A numerical example of how the trends are calculated is presented in Appendix A.

Each day predicted water temperatures for the five-day forecast period were checked and the three trends calculated. If two of the three trends indicated that the water temperature in the Nechako River above the Stuart River confluence could potentially exceed $19.4^{\circ} \mathrm{C}$ $\left(67.0^{\circ} \mathrm{F}\right)$ then an increase in the Skins Lake Spillway release was required. When this occurred the current day's release was revised and the flow and temperature models were rerun using the modified flow regime. Results of each day's final computer run were subsequently used to initialize water temperatures for the following day's computations. Entries in Table 1 represent each day's final cooling water release and resultant predicted water temperatures.

The following release criteria were used with the three trends identified above to determine the timing and magnitude of Skins Lake Spillway releases:

1. When two of the three trends show an increase in water temperature in the Nechako River above the Stuart River confluence, and these trends show that potentially the water temperature could exceed $19.4^{\circ} \mathrm{C}\left(67.0^{\circ} \mathrm{F}\right)$, increase the

Skins Lake Spillway release according to criteria 2 and 3 below.
2. Operate Skins Lake Spillway such that flow in the Nechako River below Cheslatta Falls ranges between $170 \mathrm{~m}^{3} / \mathrm{s}$ ($6,000 \mathrm{cfs}$) and $283 \mathrm{~m}^{3} / \mathrm{s}(10,000 \mathrm{cfs})$ as required, and flow in the Nechako River above the Stuart River confluence (as measured at Vanderhoof) does not exceed $340 \mathrm{~m}^{3} / \mathrm{s}$ ($12,000 \mathrm{cfs}$). It is understood that the flow in the Nechako River below Cheslatta Falls is to be not less than $170 \mathrm{~m}^{3} / \mathrm{s}(6,000 \mathrm{cfs})$ by the beginning of the control period, and is to be reduced to approximately 31.2 $\mathrm{m}^{3} / \mathrm{s}(1,100 \mathrm{cfs})$ by September 6.
3. At any time, increase the Skins Lake Spillway release from the current level to $453 \mathrm{~m}^{3} / \mathrm{s}(16,000 \mathrm{cfs})$ to achieve the flow changes in the Nechako River as quickly as possible.
4. During cooling periods when two of three trends in forecasted water temperatures are decreasing and these trends indicate that potentially the water temperature could drop below $19.4^{\circ} \mathrm{C} \quad\left(67.0^{\circ} \mathrm{F}\right)$ within the forecast period (five days), reduce the Skins Lake Spillway release from the current level to $14.2 \mathrm{~m}^{3} / \mathrm{s}$ (500 cfs).

RESULTS

Predicted and recorded mean daily water temperatures for the Nechako River above the Stuart River confluence, Skins Lake Spillway releases, and changes in Skins Lake Spillway releases over the duration of the Project operational period are summarized in Table 2.

Recorded mean daily water temperatures in the Nechako River above the Stuart River confluence (Figure 2 and Table 3) did not exceeded $20.0^{\circ} \mathrm{C} \quad\left(68.0^{\circ} \mathrm{F}\right)$. The respective
maximum and minimum mean daily water temperatures recorded during the control period were $19.5^{\circ} \mathrm{C}\left(67.1^{\circ} \mathrm{F}\right)$ on August 16 and 17 , and $15.7^{\circ} \mathrm{C}\left(60.3^{\circ} \mathrm{F}\right)$ on July 31,2008 . Mean daily water temperatures in the Nechako River below Cheslatta Falls, near Fort Fraser and above the Stuart River confluence, and in the Nautley River near Fort Fraser are presented in Appendix B.

Skins Lake Spillway releases and their corresponding flows in the Nechako River below Cheslatta Falls and at Vanderhoof are plotted in Figure 3 (source data are provided in Appendix C). Changes in Skins Lake Spillway releases during the STMP were made on the following dates:

1. July 11 - Increase to $136 \mathrm{~m}^{3} / \mathrm{s}$ - to increase flow in Nechako River below Cheslatta Falls to STMP base flow by July 20.
2. July 14 - Increase to $223 \mathrm{~m}^{3} / \mathrm{s}$ - to increase flow in Nechako River below Cheslatta Falls to STMP base flow by July 20.
3. July 16 - Increase to $283 \mathrm{~m}^{3} / \mathrm{s}$ - to increase flow in Nechako River below Cheslatta Falls to STMP base flow by July 20.
4. July 19 - Decrease to $170 \mathrm{~m}^{3} / \mathrm{s}$ - to ensure flow in Nechako River below Cheslatta Falls is maintained at summer base flow.
5. July 22 - Increase to $453 \mathrm{~m}^{3} / \mathrm{s}$ - to increase flow in Nechako River below Cheslatta Falls in response to warming trend.
6. July 23 - Decrease to $14.2 \mathrm{~m}^{3} / \mathrm{s}$ - to decrease flow in Nechako River below Cheslatta Falls in response to cooling trend.
7. July 24 - Increase to $170 \mathrm{~m}^{3} / \mathrm{s}$ - to ensure flow in Nechako River below Cheslatta Falls is maintained at summer base flow
8. August 13 - Increase to $453 \mathrm{~m}^{3} / \mathrm{s}$ - to increase flow in Nechako River below

Cheslatta Falls in response to warming trend.
9. August 16 - Decrease to $283 \mathrm{~m}^{3} / \mathrm{s}$ - to limit flow in Nechako River below Cheslatta Falls to maximum or 283 $\mathrm{m}^{3} / \mathrm{s}$.
10. August 17 - Decrease to $14.2 \mathrm{~m}^{3} / \mathrm{s}$ - to ensure flow in Nechako River below Cheslatta Falls is maintained at fall spawning flow.

During the control period, measured flows in the Nechako River below Cheslatta Falls (based on preliminary WSC data from the WSC data collection platform at Bert Irvine's Lodge) ranged between a maximum of $291.5 \mathrm{~m}^{3} / \mathrm{s}$ ($10,291 \mathrm{cfs}$) on August 17 and a minimum of $161.4 \mathrm{~m}^{3} / \mathrm{s}$ ($5,700 \mathrm{cfs}$) on August 6. Flows measured in the Nechako River at Vanderhoof ranged between a maximum of $314.8 \mathrm{~m}^{3} / \mathrm{s}$ ($11,114 \mathrm{cfs}$) on August 19 and a minimum of $176 \mathrm{~m}^{3} / \mathrm{s}(6,209 \mathrm{cfs})$ on July 20.

DI SCUSSI ON

The discussion of the 2008 Summer Water Temperature and Flow Management Project has been divided into three sections. The first section reviews the collection and use of recorded field data, including water temperature, flow, and meteorological data (recorded and forecast). The second section discusses the volume of water used during the 2008 Summer Water Temperature and Flow Management Project. The third section provides a brief discussion of the application of the Project release criteria.

Recorded Data

The modelling procedure was initialized using recorded conditions. The quality of the field data used in the modelling process directly affects the accuracy of the computed water temperatures. Therefore, data must be collected accurately and consistently to ensure that random errors are kept to a minimum. Further, consistency in data collection techniques also
ensures that, if a bias exists in the data, it remains relatively constant throughout the project.

In 2008, river discharges in the Nechako River below Cheslatta Falls and at Vanderhoof as recorded by the Water Survey of Canada changed as expected in response to Skins Lake Spillway releases (Figure 3). The hourly stage data from the gauging stations located on the Nechako River below Cheslatta Falls and at the west end of Cheslatta Lake proved very useful in verifying the daily predictions of the flow routing model and to account for changes in the local inflow to the Cheslatta/Murray Lakes system.

As previously stated, spot and corresponding data logger water temperatures were collected in the Nechako River at Fort Fraser and in the Nechako River above the Stuart River confluence during each site visit. The logger water temperatures were comparable to their associated spot temperatures.

Volume of Water Used

The recorded flows in the Nechako River below Cheslatta Falls for the 2008 Summer Water Temperature and Flow Management Project are shown in Figure 4. Also indicated is the minimum cooling flow of $170 \mathrm{~m}^{3} / \mathrm{s}(6,000 \mathrm{cfs})$ in the Nechako River below Cheslatta Falls, and the Skins Lake Spillway spring base release of $49.0 \mathrm{~m}^{3} / \mathrm{s}$ ($1,730 \mathrm{cfs}$) as determined by the NFCP Technical Committee as part of the "Annual Water Allocation" defined in the 1987 Settlement Agreement (Anon. 1987).

The total volume of water released during the 2008 Summer Water Temperature and Flow Management Project operational period was $7,529.3 \mathrm{~m}^{3} / \mathrm{s}-\mathrm{d}$, ($265,897 \mathrm{cfs}-\mathrm{d}$). The volume released for cooling purposes was $5,610.7 \mathrm{~m}^{3} / \mathrm{s}-$ d (198,140 cfs-d), and is based on an assumed Skins Lake Spillway release of $49.0 \mathrm{~m}^{3} / \mathrm{s}$ ($1,730 \mathrm{cfs}$) for the period July 10 to August 16, inclusive, with a reduction to $14.2 \mathrm{~m}^{3} / \mathrm{s}$ (500 cfs)

Table 2 Predicted and Recorded Mean Daily Water Temperatures in the Nechako River above the Stuart River Confluence, July 10 to August 20, 2008																						
Predicted and Recorded Me	Daily	Water	Tempe	atures	in the	Nechak	River	above	he Stu	art Rive	$\begin{aligned} & \text { er Confl } \\ & \hline \text { JULY } \\ & \hline \end{aligned}$	uence,	July 10	to Aug	ust 20,	2008						
Date	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
5th Day's Predicted Water Temperature at Date +4 Days					17.8	17.5	17.4	20.0	17.8	17.8	18.2	18.0	17.3	17.2	18.2	18.7	19.4	18.7	18.3	18.8	19.1	17.0
4th Day's Predicted Water Temperature at Date +3 Days				17.7	17.4	17.4	18.9	17.7	17.8	17.9	18.0	16.9	16.2	17.6	18.1	19.3	19.1	18.7	19.1	19.0	17.4	16.4
3rd Day's Predicted Water Temperature at Date +2 Days			17.8	17.0	17.8	16.9	17.5	18.0	18.1	18.0	16.9	15.7	17.0	17.2	18.4	18.5	18.6	19.3	19.0	17.6	16.9	14.7
2nd Day's Predicted Water Temperature at Date +1 Day		18.3	16.5	18.1	16.7	17.3	18.2	18.8	18.5	17.4	16.7	16.5	16.5	17.1	17.6	18.0	18.9	18.8	17.3	17.5	14.7	14.5
Current Day's Predicted Water Temperature at Date	17.9	16.2	18.3	17.0	17.7	18.5	19.3	19.3	18.3	18.1	16.6	16.1	16.0	17.1	17.6	18.4	18.5	17.5	17.7	15.8	15.5	15.4
Previous Day's Calculated Water Temperature at Date-1 Day	17.0	17.0	16.9	17.1	17.9	18.6	19.2	19.0	18.4	17.7	16.3	15.8	15.8	16.9	17.4	18.0	17.9	17.7	17.0	16.1	15.8	15.6
Previous Day's Recorded Water Temperature at Date - 1 Day	16.4	16.7	17.5	17.8	18.1	18.6	18.9	18.6	18.4	17.4	16.6	16.3	16.7	17.0	17.6	18.0	18.1	17.7	16.9	16.6	16.1	15.7
Current Day's Skins Lake Spillway Release	49	49	136	136	136	223	223	283	283	283	170	170	170	453	14.2	170	170	170	170	170	170	170
at Date		to			to		to			to			to	to	to							
		@			@		@			@			(1)	(1)	@							
		1100			0800		1600			0010			1900		1600							
		hrs			hrs		hrs			hrs			hrs		hrs							

Date	1	2	3	4	5	6	7	8	9	Table 2 (continued)			13	14	15	16	17	18	19	20
											UGUS									
										10	11	12								
5th Day's Predicted Water Temperature at Date +4 Days	16.5	16.1	15.6	16.3	17.2	17.1	18.1	18.8	18.4	16.2	15.4	17.0	17.3	18.3	19.1	19.1	19.6	19.3	19.0	18.0
4th Day's Predicted Water Temperature at Date +3 Days	15.5	14.9	14.9	15.8	16.5	17.7	18.9	18.9	16.7	15.8	17.3	17.3	17.5	17.9	18.4	19.2	19.4	19.5	19.0	17.9
3rd Day's Predicted Water Temperature at Date +2 Days	14.4	14.3	14.8	15.3	17.1	18.5	18.9	17.0	16.6	18.3	18.0	16.3	16.0	17.7	18.4	19.1	19.8	19.8	18.9	17.9
2nd Day's Predicted Water Temperature at Date +1 Day	14.5	14.7	15.0	16.8	18.0	18.5	17.8	17.5	18.8	19.0	15.9	14.6	17.1	17.7	18.4	19.8	20.2	19.7	18.6	17.4
Current Day's Predicted Water Temperature at Date	15.4	15.6	16.8	17.7	18.2	18.6	18.7	18.9	19.4	17.2	15.0	16.6	17.3	17.9	19.5	20.2	19.9	19.3	18.3	17.0
revious Day's Calculated Water Temperature at Date-1 Day	15.7	16.1	16.9	17.5	18.2	18.9	19.0	18.8	18.6	16.7	15.5	16.4	17.2	18.1	19.6	19.9	19.6	19.2	18.1	
Previous Day's Recorded Water Temperature at Date - 1 Day	15.8	16.4	16.9	17.4	18.1	18.6	18.8	18.9	18.5	16.9	15.9	16.5	17.4	18.3	19.1	19.5	19.5	19.0	18.1	
Current Day's ins Lake Spillway Release at Date ($\mathrm{m}^{3} / \mathrm{s}$)	170	170	170	170	170	170	170	170	170	170	170	170	$\begin{gathered} 170 \\ \text { to } \\ 453 \\ @ \\ 1600 \\ \text { hrs } \end{gathered}$	453	453	$\begin{gathered} 453 \\ \text { to } \\ 283 \\ @ \\ 1600 \\ \text { hrs } \end{gathered}$	$\begin{gathered} 283 \\ \text { to } \\ 14.2 \\ \text { @ } \\ 1600 \\ \text { hrs } \end{gathered}$	14.2	14.2	14.2

Table 3

Recorded Mean Daily Water Temperatures in the Nechako River above the Stuart River Confluence, July 10 to August 20, 2008

Date	Water Temperature $\left({ }^{\circ} \mathrm{C}\right)$
10-Jul	16.4
11-Jul	16.7
12-Jul	17.5
13-Jul	17.8
14-Jul	18.1
15-Jul	18.6
16-Jul	18.9
17-Jul	18.6
18-Jul	18.4
19-Jul	17.4
20-Jul	16.6
21-Jul	16.3
22-Jul	16.7
23-Jul	17.0
24-Jul	17.6
25-Jul	18.0
26-Jul	18.1
27-Jul	17.7
28-Jul	16.9
29-Jul	16.6
30-Jul	16.1
31-Jul	15.7

	Water
Date	Temperature
	$\left({ }^{\circ} \mathrm{C}\right)$

2-Aug
15.8

3-Aug
16.4

4-Aug
16.9
17.4

5-Aug $\quad 18.1$
6-Aug $\quad 18.6$
7-Aug 18.8
8-Aug 18.9
9-Aug 18.5
10-Aug 16.9
11-Aug 15.9
12-Aug 16.5
13-Aug 17.4
14-Aug 18.3
15-Aug 19.1
16-Aug 19.5
17-Aug 19.5
18-Aug 19.0
19-Aug 18.1
20-Aug

Page 12

Figure 4: Flows in the Nechako River below Cheslatta Falls Resulting from Skins Lake Spillway Releases, July 10 to August 20, 2008

until August 20. The average release during the operational period was $179.3 \mathrm{~m}^{3} / \mathrm{s}(6,330.9 \mathrm{cfs})$. Volume calculations are presented in Appendix E.

Application of the Summer Water

Temperature and Flow Management

 Project Release CriteriaThe Summer Water Temperature and Flow Management Project is very sensitive to the accuracy of meteorological forecasting. If an increase or decrease in temperature occurs over a prolonged period of time (three or four days),
inaccurate meteorological forecasts may predict the reversal of the temperature change prematurely. In these instances, it may be required to exercise judgment when applying the Summer Water Temperature and Flow Management Project release criteria used with the three water temperature trends. This judgment is based on experience gained in the operation of the Summer Water Temperature and Flow Management Project since 1984 and may result in exceptions to the decision based on strict adherence to the release criteria. Exceptions were made to the application of the
release criteria during the 2008 operational period.

On August 14, 2008, one of three water temperature trends indicated that the water temperature could reach $21.8^{\circ} \mathrm{C}\left(71.3^{\circ} \mathrm{F}\right)$ in the Nechako River above Stuart River within the forecast period (5 days). The remaining two trends showed that the water temperature could hit $19.3^{\circ} \mathrm{C}\left(66.8^{\circ} \mathrm{F}\right)$ and $19.4^{\circ} \mathrm{C}\left(66.9^{\circ} \mathrm{F}\right)$. Following the release criteria under these conditions, the release from Skins Lake Spillway should have been decreased from the current release of $453 \mathrm{~m}^{3} / \mathrm{s}$ ($16,000 \mathrm{cfs}$) to 14 $\mathrm{m}^{3} / \mathrm{s}$ (500 cfs). However, there was no strong indication of a strong cooling trend forming. Therefore, as a conservative measure, it was decided to maintain the spillway release at 453 $\mathrm{m}^{3} / \mathrm{s}(16,000 \mathrm{cfs})$ until a cooling trend was clearly established on August 16.

SUMMARY

The 2008 Nechako River Summer Water Temperature and Flow Management Project (the Project) was undertaken to attempt to prevent mean daily water temperatures in the Nechako River above the Stuart River confluence (at Finmoore) from exceeding $20.0^{\circ} \mathrm{C}$ ($68.0^{\circ} \mathrm{F}$) between July 20 and August 20. Water temperatures were managed by regulating Skins Lake Spillway releases to control flows in the Nechako River below Cheslatta Falls and at Vanderhoof. In 2008, mean daily water temperatures in the Nechako River above the Stuart River confluence did not exceed $20.0^{\circ} \mathrm{C}$ ($68.0^{\circ} \mathrm{F}$) between July 20 and August 20.

REFERENCES

Anon. 1987. The 1987 Settlement Agreement between Alcan Aluminium Ltd. and Her Majesty the Queen in Right of Canada, represented by the Minister of Fisheries and Oceans, and her Majesty the Queen in Right of the Province of British Columbia, represented by the Ministry of Energy, Mines and Petroleum Resources.

Envirocon 1984a. Documentation of the Nechako River Water Temperature Model. Technical Memorandum 1957/1. Prepared for Alcan Smelters and Chemicals Ltd.

Envirocon 1984b. Documentation of the Nechako River Unsteady State Water Temperature Model. Technical Memorandum 1957/2. Prepared for Alcan Smelters and Chemicals Ltd.

Envirocon 1984c. Documentation of the Users guide to the 1984 Nechako River Hydrothermal Model. Technical Memorandum 1957/3. Prepared for Alcan Smelters and Chemicals Ltd.

Envirocon Limited. 1985. Review of the 1984 Nechako River Hydrothermal Monitoring and Control Program. Technical Memorandum 1941/C. Chapter 2.0, Methods. Prepared for Alcan Smelters and Chemicals Ltd.

Triton Environmental Consultants Ltd. 1995a. The 1988 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM88-5.

Triton Environmental Consultants Ltd. 1995b. The 1989 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM89-2.

Triton Environmental Consultants Ltd. 1995c. The 1990 Summer Water Temperature and

Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM90-2.

Triton Environmental Consultants Ltd. 1995d. The 1991 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM91-2.

Triton Environmental Consultants Ltd. 1995e. The 1992 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM92-2.

Triton Environmental Consultants Ltd. 1995 f. The 1993 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM93-2.

Triton Environmental Consultants Ltd. 1995g. The 1994 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM94-1.

Triton Environmental Consultants Ltd. 1995h. The 1995 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM95-2.

Triton Environmental Consultants Ltd. 1996. The 1996 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM96-1.

Triton Environmental Consultants Ltd. 1997. The 1997 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM97-1.

Triton Environmental Consultants Ltd. 1998. The 1998 Summer Water Temperature and Flow Management Project. Nechako Fisheries

Conservation Program Technical Report No. RM98-1.

Triton Environmental Consultants Ltd. 1999. The 1999 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM99-1.

Triton Environmental Consultants Ltd. 2000. The 2000 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM00-1.

Triton Environmental Consultants Ltd. 2001. The 2001 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM01-1.

Triton Environmental Consultants Ltd. 2002. The 2002 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM02-1.

Triton Environmental Consultants Ltd. 2003. The 2003 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM03-1.

Triton Environmental Consultants Ltd. 2004. The 2004 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM04-1.

Triton Environmental Consultants Ltd. 2005. The 2005 Summer Water Temperature and Flow Management Project. Nechako Fisheries Conservation Program Technical Report No. RM05-1.

Triton Environmental Consultants Ltd. 2006. The 2006 Summer Water Temperature and Flow Management Project. Nechako Fisheries

Conservation Program Technical Report No. RM06-1.

APPENDIXA

Numerical Example of Water Temperature Trend Calculation

Appendix A

Numerical Example of Water Temperature Trend Calculation

From data for July 16 date of operation (Table A1).

1. Observed Trend

The observed trend is down by $0.1^{\circ} \mathrm{C}$ from $17.7^{\circ} \mathrm{C}$ (J14) to $17.6^{\circ} \mathrm{C}(\mathrm{J} 15)$. Take the previous day's recorded temperature $17.6^{\circ} \mathrm{C}$ (J15) and extrapolate the trend for five days at $-0.1^{\circ} \mathrm{C}$. The observed trend shows that the water temperature could potentially reach $17.7^{\circ} \mathrm{C}+5\left(-0.1^{\circ} \mathrm{C}\right)$ $=17.2^{\circ} \mathrm{C}$.
2. Predicted Trend

The predicted trend is the difference between the previous day's calculated water temperature (J15) and the fifth day predicted water temperature (J20). The predicted trend is up from $17.6^{\circ} \mathrm{C}$ to $19.1^{\circ} \mathrm{C}$ with the potential to reach $19.1^{\circ} \mathrm{C}$.
3. Forecast Trend

The forecast trend for the current day of July 16 is based on the first, second and third day forecasts.

July $16 \quad 17.8$ to $18.3=$ up $0.5^{\circ} \mathrm{C}$
July $17 \quad 18.0$ to $18.8=$ up $0.8^{\circ} \mathrm{C}$
July $18 \quad$ 18.4 to $18.9=$ up $0.5^{\circ} \mathrm{C}$

Mean of 3 differences $=$ up $0.6^{\circ} \mathrm{C}$

This mean of $0.6^{\circ} \mathrm{C}$ is added to the fifth day predicted water temperature to give $19.1^{\circ} \mathrm{C}+$ $\left(0.6^{\circ} \mathrm{C}\right)=19.7^{\circ} \mathrm{C}$.

Table A1 Predicted and Recorded Mean Daily Water Temperatures in the Nechako River above the Stuart River Confluence, 2008											
							JULY				
Date	10	11	12	13	14	15	16	17	18	19	20
5th Day's Predicted Water Temperature at Date +4 Days					17.8	17.5	17.4	20.0	17.8	17.8	18.2
4th Day's Predicted Water Temperature at Date +3 Days				17.7	17.4	17.4	18.9	17.7	17.8	17.9	
3rd Day's Predicted Water Temperature at Date +2 Days			17.8	17.0	17.8	16.9	17.5	18.0	18.1		
2nd Day's Predicted Water Temperature at Date +1 Day		18.3	16.5	18.1	16.7	17.3	18.2	18.8			
Current Day's Predicted Water Temperature at Date	17.9	16.2	18.3	17.0	17.7	18.5	19.3				
Previous Day's Calculated Water Temperature at Date-1 Day	17.0	17.0	16.9	17.1	17.9	18.6					
Previous Day's Recorded Water Temperature at Date-1 Day	16.4	16.7	17.5	17.8	18.1	18.6					
Current Day's Skins Lake Spillway Release at Date $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	49.0	$\begin{gathered} 49.0 \\ \text { to } \\ 136.0 \\ @ \\ 1100.0 \\ \text { hrs } \end{gathered}$	136.0	136.0	$\begin{gathered} 136.0 \\ \text { to } \\ 223.0 \\ @ \\ 800.0 \\ \text { hrs } \end{gathered}$	223.0	$\begin{gathered} 223.0 \\ \text { to } \\ 283.0 \\ @ \\ 1600.0 \\ \text { hrs } \end{gathered}$	283.0	283.0	$\begin{gathered} 283.0 \\ \text { to } \\ 170.0 \\ @ \\ 10.0 \\ \text { hrs } \end{gathered}$	170.0

APPENDI X B

Mean Daily Water Temperatures in the Nechako and Nautley Rivers, 2008

әұе

崔

APPENDIX C

Mean Daily Skins Lake Spillway Releases and Flows in the Nechako and Nautley Rivers, 2008

Appendix C

Mean Daily Skins Lake Spillway Releases and Flows in the Nechako and Nautley Rivers, 2008

	Skins Lake Spillway Release $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Nechako River Cheslatta	Falls $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	At Vanderhoof $\left(\mathrm{m}^{3} / \mathrm{s}\right)$

Appendix C (continued)

Mean Daily Skins Lake Spillway Releases and Flows in the Nechako and Nautley Rivers, 2008

Date	$\begin{gathered} \hline \text { Skins Lake } \\ \text { Spillway } \\ \text { Release } \\ \left(\mathrm{m}^{3} / \mathrm{s}\right) \\ \hline \end{gathered}$	Nechako River		Nautley River Fort Fraser (m3/s)
		Cheslatta		
		Falls	Vanderhoof	
		$\left(\mathrm{m}^{3} / \mathrm{s}\right)$	$\left(\mathrm{m}^{3} / \mathrm{s}\right)$	
11-Aug	170	163.3	197.4	31.3
12-Aug	170	163.3	195.1	28.1
13-Aug	170 to 453	165.9	192.9	28.4
	@ 1600 hrs			
14-Aug	453	171.2	191.9	28.0
15-Aug	453	214.4	197.4	27.8
16-Aug	453 to 283	259.6	217.0	27.6
	@ 1600 hrs			
17-Aug	283 to 14.2	291.4	266.4	27.1
	@ 1600 hrs			
18-Aug	14.2	289.6	303.7	26.4
19-Aug	14.2	254.5	314.7	26.2
20-Aug	14.2	218.6	294	26.2

APPENDIX D

Recorded and Forecast Meteorological Data

Appendix D
Recorded and Forecast Meteorological Data 2008

12.1	443.82	0.79	7.6	10.8	92.8
13	400	0.7	7.4	7	93.3
14.2	550	0.3	5.5	5	93.5
15.5	390	0.6	8.5	5	93.4
14.5	420	0.7	9.5	12	93.5
14.3	480	0.4	7	6	93.3
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)
WORLD WEATHERWATCH FORECAST ISSUED JUL 10/08					

75.5	090708
65	100708
60	
68	
70	
62	
RH(\%)	DD MM YY

12.1	291.3	0.57	2.5	12.9	93.4
15.7	535	0.3	3	10	93.7
17.5	482	0.47	6	10	93.6
16.2	558	0.24	3.2	5.3	93.2
15	407	0.61	6.9	5.1	93.4
16.4	409	0.58	7.1	5.7	93.5
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)
WORLD WEATHERWATCH FORECAST ISSUED JUL 11/08					

53.3	100708
40.4	110708
46.8	
41.8	
58.4	
54.13	
$\mathrm{RH}(\%)$	DD MM YY

19.8	528	0.3	7.8	18.9	94
16.2	428	0.55	9	10	93.6
15.3	567	0.1	6.5	7	93.2
14.6	380	0.58	7	7.3	93.3
15.1	402	0.6	6	4.6	93.5
15.8	578	0.18	6.8	5.6	93.5
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)
WORLD WEATHERWATCH FORECAST ISSUED JUL 12/08					

45.8	110708
62	120708
56	
60	
54	
55	

WORLD WEATHERWATCH FORECAST ISSUED JUL 12/08

19.8	-99	0.3	-7.8	18.9	-99	-99	120708
15.3	567	0.2	6.5	7.2	93.2	56	130708
14.6	380	0.5	7	7.3	93.4	60	
15.1	402	0.6	6	4.6	93.5	54	
15.8	578	0.18	6.8	5.6	93.5	55	
15.5	520	0.2	6.6	6.5	93.4	55	

$\operatorname{ATEMP}(\mathrm{C}) \quad \mathrm{RAD}(\mathrm{LY}) \quad \mathrm{CC}(\mathrm{TTHS}) \quad \mathrm{DPT}(\mathrm{C}) \quad \mathrm{SPD}(\mathrm{KH}) \quad \mathrm{SPR}(\mathrm{KPA}) \quad \mathrm{RH}(\%) \quad$ DD MM YY WORLD WEATHERWATCH FORECAST ISSUED JUL 13/08

13.9	215.1	0.53	8.8	8.2	93.6	74.3	130708
14	480	0.5	7.2	10	93.6	64	140708
14.5	530	0.45	5.5	5.5	93.4	54	
15.5	500	0.4	6.3	5.6	93.6	55	
15	470	0.5	6.8	6.5	93.5	58	
14.5	400	0.6	7.2	8	93.3	63	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED JUL 14/08							

Appendix D (continued)							
Recorded and Forecast Meteorological Data 2008							
14.8	310	0.61	7.5	9.3	93.5	64	140708
15.3	400	0.58	8.5	7	93.5	64	150708
16	550	0.4	7.8	5	93.6	58	
15	380	0.68	8.5	6.5	93.5	65	
15.2	450	0.6	7.5	8	93.3	60	
15.5	500	0.48	7	12	93.3	56	

WORLD WEATHERWATCH FORECAST ISSUED JUL 15/08

14.6	277	0.5	8.8	5.9	93.5	70.2	150708
15	521	0.4	8	5	93.5	61	160708
15	450	0.6	8	5	93.5	61	
15.5	435	0.6	7	7	93.4	57	
15	502	0.6	6	6	93.1	54	
17.5	480	0.5	11	5	93	64	

ATEMP(C) RAD(LY) CC(TTHS) DPT(C) $\quad \mathrm{SPD}(\mathrm{KH}) \quad \mathrm{SPR}(\mathrm{KPA}) \quad \mathrm{RH}(\%) \quad$ DD MM YY WORLD WEATHERWATCH FORECAST ISSUED JUL 16/08

15.7	290.1	0.46	7.9	7.5	93.7	64.5	160708
15	467	0.55	9	5	93.7	67.4	170708
15.5	380	0.55	8.5	7	93.3	63.1	
15.5	460	0.6	7.5	7	93.1	58.9	
16.5	410	0.6	9	8	92.8	61.2	
12	470	0.63	6.5	5.5	93	69.1	

ATEMP(C) RAD(LY) CC(TTHS) DPT(C) SPD(KH) SPR(KPA) RH(\%) DD MM YY WORLD WEATHERWATCH FORECAST ISSUED JUL 17/08

13.19	243.2	0.7	7.2	2.2	93.2	66.5	170708
14.5	435	0.55	9.5	6	93.3	72	180708
15	255	0.9	10.5	6	92.9	74.5	
15	215	0.95	10.5	8	92.8	74.5	
12	555	0.3	7	5	93.3	71.5	
12	650	0.1	2	4	93.8	50.4	

ATEMP(C) RAD(LY) CC(TTHS) DPT(C) SPD(KH) SPR(KPA) RH(\%) DD MMYY WORLD WEATHERWATCH FORECAST ISSUED JUL 18/08

14.7	309.6	0.68	9.3	8.9	93.5	73.4	180708
14	427	0.65	6.5	9.2	93	60.6	190708
14.9	3.2	0.9	9.6	9.2	92.8	70.6	
13.2	424	0.63	8	6.4	93.5	70.3	
13	560	0.25	5	4	93.5	58	
15.3	550	0.28	9.3	5.9	93.5	67.4	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED JUL 19/08							

Appendix D (continued)
Recorded and Forecast Meteorological Data 2008

13.8	146	0.57	8.6	7.9	93.3	73.4	190708
16.6	439	0.53	9.7	10	92.9	63.7	200708
14.1	508	0.35	6.9	7.3	93.2	61.9	
13.5	590	0.18	6.8	5.3	93.4	63.9	
15.2	570	0.8	8.7	6	93.6	65.1	
16.7	608	0.05	7.3	4.8	93.4	53.8	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	$\operatorname{SPD}(\mathrm{KH})$	SPR(KPA)	RH(\%)	DD MM YY

WORLD WEATHERWATCH FORECAST ISSUED JUL 20/08

13.02	332.2	0.4	5.1	7.9	93.3	58	200708
15.9	595	0.2	7.5	5	93.4	57.4	210708
16.5	620	0.15	8.6	6	93.7	59.5	
16.9	620	0.15	8.5	5	93.5	57.6	
18.8	610	0.2	6.5	6	93.8	45	
17.1	600	0.4	6.8	5.5	93.6	51	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED JUL 21/08							

12.8	332.2	0.2	4.1	4.9	93.6	59.7	210708
14.8	585	0.2	8.6	5.9	93.5	66.4	220708
16.7	610	0.2	7.3	4.8	93.4	53.8	
18.9	620	0.2	6.5	5	93.7	44	
17.4	570	0.5	6.8	5.2	93.6	49.7	
13.8	170	0.8	9.5	9.5	92.2	75.2	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	$\operatorname{SPD}(\mathrm{KH})$	$\operatorname{SPR}(\mathrm{KPA})$	RH(\%)	DD MM YY

14.5	321	0.2	4.7	3.2	93.7	57.2	220708
17	570	0.23	7	5	93.6	51.2	230708
19	580	0.1	6	6	93.2	42.6	
18.5	515	0.65	5.5	5	93.1	42.5	
14.5	390	0.65	10.5	6	93	76.9	
13	505	0.35	5	8	92.9	58.3	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED JUL 23/08							
16.4	320	0.22	5.4	6	93.7	53.3	230708
19.5	640	0.15	8.5	4	93.4	49	240708
18.5	580	0.7	7	7	93.1	47.1	
16	500	0.5	7.5	5.5	92.8	57.1	
14	590	0.25	2	5	93	44.2	
16	550	0.8	6	4	92.6	51.5	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED JUL 24/08							

Appendix D (continued) Recorded and Forecast Meteorological Data 2008							
19.3	282.3	0.18	7	9	93.3	51.2	240708
19	580	0.8	7	8	93.1	44.1	250708
16.5	560	0.5	5.5	8	93	48.1	
15.5	610	0.2	3.5	5	92.9	44.6	
16	500	0.85	6	5	92.7	51.5	
14	550	0.75	8.5	5	93	69.5	

WORLD WEATHERWATCH FORECAST ISSUED JUL 25/08

19.8	166.1	0.76	8	9.9	93.1	47.6	250708
15.5	205	0.95	10	8	92.8	70	260708
15.5	635	0.5	4.5	5	92.9	40.1	
15	305	0.8	8.5	9	92.5	67.4	
13.5	280	0.85	8	8.5	93	71.8	
13.5	395	0.6	7.5	9	93	69.3	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED JUL 26/08							

15.8	241	0.81	10.5	9.5	93.1	72	260708
16	560	0.25	7.5	6.5	92.9	57.1	270708
15	230	0.92	10	14.5	92.4	72	
13	250	0.9	8.5	11	93	76.7	
13	360	0.7	7.5	9.5	93	69.5	
13.5	380	0.65	8	8	93.1	69.4	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	$\operatorname{SPD}(\mathrm{KH})$	$\operatorname{SPR}(\mathrm{KPA})$	$\mathrm{RH}(\%)$	DD MM YY

14.6	167.8	0.5	8.5	9.1	93.2	69	270708
14.2	160	0.8	8	17	92.5	65	280708
12	250	0.6	7	12	92.9	71.5	
13	370	0.5	6	11	93.2	62.5	
13	290	0.6	6	6.5	93.3	62.5	
13.5	380	0.2	4	5	93.4	52.6	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED JUL 28/08							
14.4	136.6	0.91	10.1	11.3	92.7	77.2	280708
12.6	190	0.6	5.5	15	92.9	61.8	290708
13	200	0.5	5	8	92.8	58.3	
12	200	0.75	8	5	92.7	76.5	
13.4	280	0.34	6	6	93.2	60.8	
14.9	290	0.2	7.8	5	93.5	62	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED JUL 29/08							

Appendix D (continued)
Recorded and Forecast Meteorological Data 2008

12	189	0.67	7.5	10.4	93.1	76.3	290708
12.5	190	0.6	6	8.5	92.8	65.2	300708
12	180	0.9	8.5	5.5	92.7	79.1	
13.4	270	0.5	6	6.5	93.2	60.8	
15.1	330	0.4	7	4.5	93.5	58.4	
17.5	520	0.2	6.5	4	93.8	48.4	

WORLD WEATHERWATCH FORECAST ISSUED JUL 30/08

11.9	197.3	0.57	5.9	5.3	92.9	70.1	300708
11.9	189.5	0.84	9	6.8	92.8	80.3	310708
14.2	275.5	0.6	6.7	8.4	93.3	60.6	
15.1	342	0.41	8.1	5.7	93.5	62.9	
17.7	525	0.25	8.7	4.3	93.8	55.6	
18.1	551	0.24	9.4	3.8	93.9	56.8	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED JUL 31/08							
11.6	216.2	0.92	8.9	6.8	92.9	84.6	310708
10.8	240	0.53	8	11.8	93.5	68	010808
14.8	330	0.37	6.8	4.8	93.5	58.7	
16.4	450	0.26	7.1	4.1	93.8	54.3	
16.9	480	0.32	7.9	3.6	93.8	55.5	
17	280	0.49	6.5	5.4	93.3	50	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY

14.7	239	0.63	7.6	12	93.5	65.7	010808
15	420	0.28	8	6.8	93.5	62.3	020808
16.5	470	0.25	6.9	5.3	93.6	53	
17	500	0.2	6.8	5	93.8	51.1	
17.2	500	0.2	6.5	6.8	93.3	50.4	
17.8	500	0.2	7.5	6.5	92.8	51	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 02/08							
15.9	298	0.26	7.5	6.6	93.7	61.7	020808
16.9	560	0.16	8.1	5.3	93.7	56.1	030808
17.6	560	0.15	7.4	5.2	93.8	51.2	
18.1	560	0.15	7.2	6.3	93.3	49	
18	500	0.2	7.5	6.5	92.8	50.3	
16.8	400	0.55	9.6	8.5	92.7	62.5	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 03/08							

 Recorded and Forecast Meteorological Data 2008

17.4	306	0.21	7.8	6.7	93.8	56.8	030808
18	530	0.2	9.2	5	93.8	56.4	040808
18.8	560	0.15	8.7	7.5	93.3	51.9	
18.5	500	0.22	7.8	7.1	92.8	50	
17.4	410	0.5	9.6	8.5	92.7	60.2	
14	380	0.6	9.5	8	93	74.2	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	$\operatorname{SPD}(\mathrm{KH})$	$\operatorname{SPR}(\mathrm{KPA})$	RH(\%)	DD MM YY

WORLD WEATHERWATCH FORECAST ISSUED AUG 04/08

17.9	302.4	0.07	9.4	2.7	93.9	62.9	040808
19	310	0.07	10	10	93.2	60	050808
19	290	0.2	8	8.3	92.6	49	
18	300	0.39	8.7	5	92.5	55	
14.8	250	0.75	8.5	7.7	92.8	65	
14.3	300	0.2	5	9	93.3	54	
ATEMP©	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 05/08							

18.5	302.4	0.08	9	4.5	93.8	56	050808
18.7	260	0.2	10	9	92.8	55	060808
18.3	250	0.27	9	7.5	92.5	52	
15.5	170	0.64	9.6	6.5	92.9	65	
14.5	230	0.31	6	8.5	92.9	56	
15.4	200	0.4	8	5.2	93.3	60	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY

20.5	251.5	0.26	9.8	7.3	93.1	53	060808
19.5	470	0.23	13	9	92.4	66	070808
16	417	0.66	11	8	92.6	72	
13.3	330	0.45	7.2	9	92.8	66	
15.3	300	0.46	9	6.3	93.5	66	
15	485	0.33	4	5	93.2	47	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 07/08							
21.9	273.5	0.3	10	10.1	92.8	51.5	070808
19.6	390	0.69	16.4	7.5	92.7	72.8	080808
13.3	310	0.55	9.9	11.4	92.8	80.7	
13.5	390	0.34	8.7	6.1	93.4	75.9	
14.6	350	0.51	6.5	4.6	93.2	59	
14.3	400	0.62	10.3	4.5	93.6	77	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 08/08							

Appendix D (continued) Recorded and Forecast Meteorological Data 2008

17.5	142.2	0.83	11.5	8.5	92.8	69.2	080808
11.1	220	0.89	8.7	21.2	93	86.9	090808
13.3	350	0.6	7.5	8.5	93.3	70.5	
15.2	310	0.72	8.2	5	93.3	65.4	
14.9	380	0.49	9.3	4.2	93.6	75.1	
16.8	450	0.28	10.4	4.4	93.7	70.5	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG $09 / 08$							

10.4	38.2	0.98	9.2	24.4	93.1	92.5	090808
11.1	300	0.73	9.2	14.5	93.4	85.1	100808
13.6	285	0.75	8.8	7	93.2	74.2	
14.8	440	0.34	9.9	4.4	93.6	76.2	
16.7	490	0.2	10.6	4	93.7	70.2	
18.7	480	0.22	12.2	3.9	93.4	69	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 10/08							

13.3	280	0.58	9.7	13.2	93.5	80.3	100808
13.5	390	0.76	9	7.3	93.2	74.2	110808
14.9	490	0.37	10	4.6	93.7	72.5	
16.8	485	0.22	11	4.2	93.8	68.7	
18.8	470	0.21	12.4	4	93.6	66.4	
19	465	0.2	12.7	4.3	93.3	66.9	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY

13.1	140	0.7	10.7	2.36	93.3	84.7	110808
15.1	495	0.4	10	4.7	93.6	71.6	120808
16.9	480	0.2	11.1	4	94.1	68.7	
19.5	470	0.23	12.5	4.1	93.7	65.2	
20.5	465	0.21	12.8	4.4	93.4	63.3	
20.3	460	0.24	13	4.5	92.6	62.9	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 12/08							
15.2	201	0.7	10.9	2.2	93.5	77.3	120808
17.2	480	0.1	11.1	5	93.7	67	130808
20	470	0.2	11.4	4.7	93.3	66	
21	475	0.1	12	4.3	930	64	
19.5	465	0.2	12.3	4	92.7	67	
19.2	460	0.3	12.5	4.2	92.9	64	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 13/08							

Appendix D (continued)
Recorded and Forecast Meteorological Data 2008

19.2	272	0.14	13	2.9	94	71.2	130808
21	475	0.2	12	4.2	93.6	63	140808
21.8	470	0.17	12	4.3	93.3	60	
20	470	0.3	11.7	5	92.7	58	
19.5	440	0.3	11.8	4.2	92.9	61	
14	420	0.35	10	4.4	92.4	58.5	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 14/08							

20.4	400	0.49	14.8	6.1	93.6	73.5	140808
20.4	490	0.17	15	5.3	93.4	71.5	150808
21.4	450	0.3	12.5	5.5	92.7	58	
19	415	0.4	12.8	4.5	92.6	66	
14.4	410	0.45	8.3	7.5	92.4	63.2	
14	260	0.83	10.5	8.6	92.1	80	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 15/08							

21.8	274.8	0.16	14.2	5.3	93.4	65.3	150808
20.7	500	0.15	12.4	8.5	92.7	62.4	160808
19.5	340	0.6	12.3	5	92.6	66.1	
14.5	335	0.6	10.6	5.8	92.3	73.5	
12.6	250	0.83	10.6	6.3	92	91.5	
10.4	235	0.86	7.1	5.2	92.9	78	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	$\operatorname{SPD}(\mathrm{KH})$	$\mathrm{SPR}(\mathrm{KPA})$	$\mathrm{RH}(\%)$	DD MM YY

21	261.8	0.22	12.7	8	92.8	64	160808
18.6	285	0.75	14.3	8.6	92.6	77.1	170808
15	290	0.72	12.5	5	92.2	85	
13.3	245	0.83	10.9	6.8	91.9	86.5	
10.6	235	0.86	8.5	4.8	92.9	85	
12.2	385	0.5	8.3	4.9	93.4	79.9	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	$\mathrm{SPD}(\mathrm{KH})$	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 17/08							
19	142.2	0.79	14.2	8.1	92.6	74	170808
14.8	180	0.8	13.7	6	92.2	90	180808
13.8	250	0.75	10	4	91.9	80	
11.5	180	0.8	8.5	4.8	92.9	85	
12.5	385	0.5	8	4.9	93.4	75	
12.5	350	0.6	8.3	6	92.8	78	
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	$\operatorname{SPD}(\mathrm{KH})$	SPR(KPA)	RH(\%)	DD MM YY
WORLD WEATHERWATCH FORECAST ISSUED AUG 18/08							

Appendix D (continued)
Recorded and Forecast Meteorological Data 2008

15.2	88	0.8	13.6	9.5	92.3	91.4
13.5	250	0.8	11	6.5	91.9	84.9
12	210	0.8	9.5	4	92.6	84.7
13	375	0.55	9	5.5	93.1	76.7
14.5	380	0.6	7.5	8.5	93.1	62.8
17	370	0.65	9	12	92.7	59.3
ATEMP(C)	RAD(LY)	CC(TTHS)	DPT(C)	SPD(KH)	SPR(KPA)	RH(\%)
WORLD WEATHERWATCH FORECAST ISSUED AUG 19/08 MM YY						

APPENDIXE

Summer Water Temperature and Flow Management Project Reservoir Release Volume Calculations for J uly 10 to August 20, 2008

Appendix E

Summer Water Temperature and Flow Management Project Reservoir Release Volume Calculations for July 10 to August 20, 2008

Skins Lake Spillway base release for the period July 10 (192) to August 20 (233) $=49.0 \mathrm{~m}^{3} / \mathrm{s}$
Summer Water Temperature and Flow Management Project Base Release Volume
$=($ JD $229-$ JD 191 $) * 49.0+($ JD $233-$ JD 229 $) * 14.16=1,918.6 \mathrm{~m}^{3} / \mathrm{s}^{*}$ days

Time period (Julian Day)		Time (hrs)	Flow Rate ($\mathrm{m}^{3} / \mathrm{s}$)	$\begin{aligned} & \text { Volume } \\ & \left(\mathrm{m}^{3} / \mathrm{s}^{*} h r s\right) \end{aligned}$
July 10 (19'2) @ 2400 hrs to July 11 (193) @ 1100 hrs		3b.l	49.0	1,/15
July 11 (193) @ 11UU hrs to July 14 (196) @ U8U0 hrs		69.0	136.0	y,384
July 14 (196) @ 0800 hrs to July 16 (198) @ 1600 hrs		56.0	223.0	12,488
July 16 (198) @ 1600 hrs to July 19 (201) @ 1000 hrs		66.0	283.0	18,678
July 19 (201) @ 1000 hrs to July 22 (204) @ 1900 hrs		81.0	170.0	13,770
July 22 (204) @ 1YU hrs to July 23 (205) @ 1400 hrs		19.0	453.0	8,6U/
July 23 (2Ub) @ 1400 hrs to July 24 (206) @ 1600 hrs		26.0	14.2	368
July 24 (206) @ 1600 hrs to August 13 (226) @ 1600 hrs		480.0	170.0	81,600
August 13 (226) @ 1600 hrs to August 16 (229) @ 1600 hrs		72.0	453.0	32,616
August 16 (229) @ 1600 hrs to August 17 (230) @ 1600 hrs		24.0	14.2	341
August 17 (230) @ 1600 hrs to August 20 (233) @ 2400 hrs		80.0	14.2	1,136
	Total	$\begin{gathered} 1,008 \\ (42.0 \text { days } \end{gathered}$		180,703
Total Release Volume	$\begin{aligned} & =180,703 \mathrm{~m}^{3} / \mathrm{s}^{*} \mathrm{hrs} \\ & =7,529.3 \mathrm{~m}^{3} / \mathrm{s}^{*} \text { days } \\ & =265,897 \mathrm{cfs}^{*} \text { days } \end{aligned}$			
Volume Released for Cooling Purposes		$\begin{aligned} & =\text { Total Volume }- \text { Base Volume } \\ & =7,529.3-1,918.6 \\ & =5,610.7 \mathrm{~m}^{3} / \mathrm{s}^{*} \text { days } \\ & =198,140 \mathrm{cfs}^{*} \text { days } \end{aligned}$		
Average Release over Summer Management Period (July 10 to August 20)		$\begin{aligned} & =7,529 \cdot 3 \mathrm{~m}^{3} / \mathrm{s}^{*} \text { days } / 42 \text { days } \\ & =179 \cdot 3 \mathrm{~m}^{3} / \mathrm{s} \\ & =6,330 \cdot 9 \mathrm{cfs} \end{aligned}$		

